

Gut Microbiota Regulate Host Longevity

Spencer XIA Mphil student Supervisor: Prof. Paul Chan 5/12/2017 Department of Microbiology

Outline

Background of longevity

Gut microbiota & Longevity

Applications

Global increase of aged population

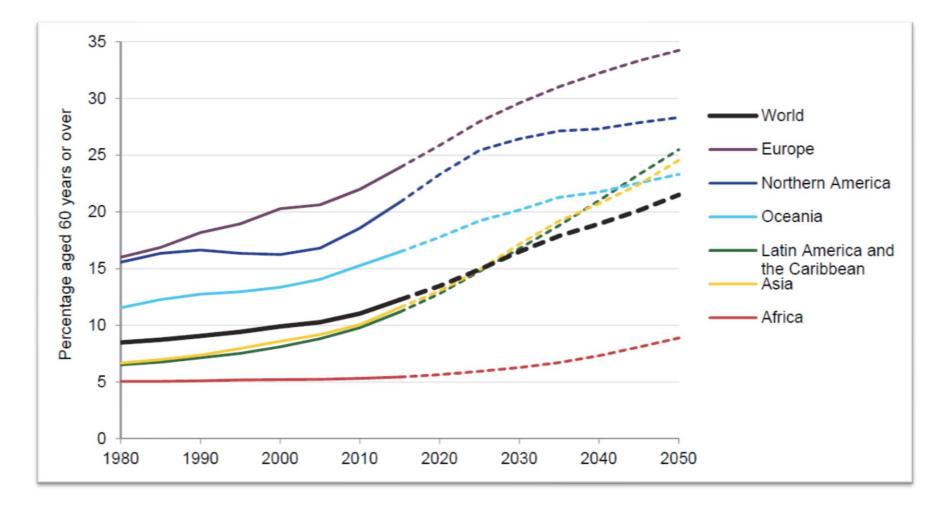


Figure 1 | Percentage of the population aged 60 years or over for the world and regions, 1980-2050

Aging-related diseases

	Μ	ales	Females			
	Cause of death	Deaths (thousands)	Pct	Cause of death	Deaths (thousands)	Pct
1	Ischaemic heart disease	2 985 226	17.8	Stroke	3 102 405	18.6
2	Stroke	2 614 535	15.6	Ischaemic heart disease	3 087 753	18.5
3	COPD ⁱ	1 541 208	9.2	COPD ⁱ	1 225 348	7.4
4	Lung cancer ⁱⁱ	858 088	5.1	Lower respiratory infection	s 780 539	4.7
5	Lower respiratory infection	s 746 789	4.5	Diabetes mellitus	656 592	3.9
6	Diabetes mellitus	500 976	3.0	Hypertensive heart disease	571 320	3.4
7	Hypertensive heart disease	399 580	2.4	Alzheimer's disease ⁱⁱⁱ	455 616	2.7
8	Stomach cancer	353 508	2.1	Lung cancer ⁱⁱ	389 966	2.3
9	Prostate cancer	309 168	1.8	Breast cancer	286 593	1.7
10	Liver cancer	306 859	1.8	Kidney diseases	279 398	1.7

Figure 2 | Ten leading causes of death of those aged 60 years or over globally, by sex, 2000-2012

Data source: World Health Organization (2014). Global Health Estimates 2014 Summary Tables: Deaths by Cause, Age and Sex.2000-2012.

Gut microbiota increase host lifespan

OPINION ARTICLE

Gut microbiota as a candidate for lifespan extension: an ecological/evolutionary perspective targeted on living organisms as metaorganisms

E. Ottaviani · N. Ventura · M. Mandrioli · M. Candela · A. Franchini · C. Franceschi

OPEN O ACCESS Freely available online

Longevity in Mice Is Promoted by Probiotic-Induced Suppression of Colonic Senescence Dependent on Upregulation of Gut Bacterial Polyamine Production

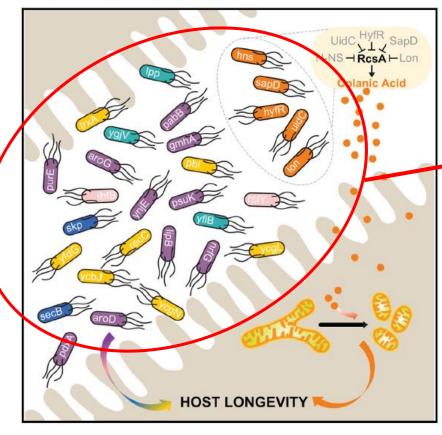
Mitsuharu Matsumoto^{1,2}*, Shin Kurihara^{3,4}, Ryoko Kibe², Hisashi Ashida⁴, Yoshimi Benno²

1 Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd., Tokyo, Japan, 2 Benno Laboratory, Innovation Center, RIKEN, Wako, Japan, 3 Division of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan, 4 Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan

AP&T Alimentary Pharmacology Biology Kyoto Uni

Synbiotic consumption changes the metabolism and composition of the gut microbiota in older people and modifies inflammatory processes: a randomised, double-blind, placebo-controlled crossover study

S. Macfarlane*, S. Cleary*, B. Bahrami*, N. Reynolds[†] & G. T. Macfarlane*


Gut microbiota increase host lifespan

Article

Cell

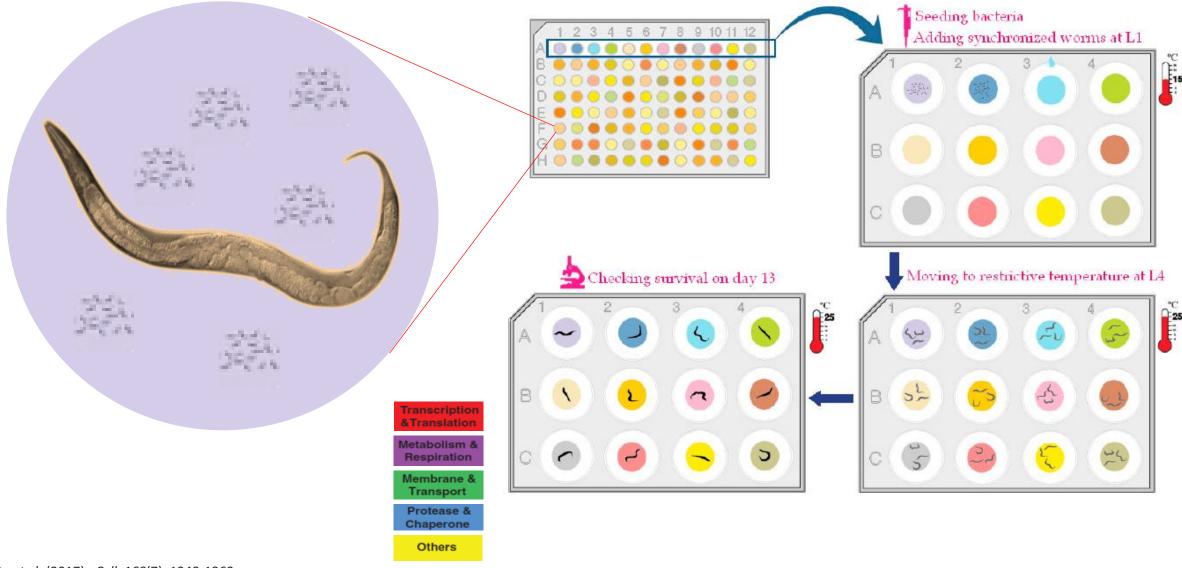
Microbial Genetic Composition Tunes Host Longevity

Graphical Abstract

Authors

Bing Han, Priya Sivaramakrishnan, Chih-Chun J. Lin, ..., Jin Wang, Christophe Herman, Meng C. Wang

Correspondence


wmeng@bcm.edu

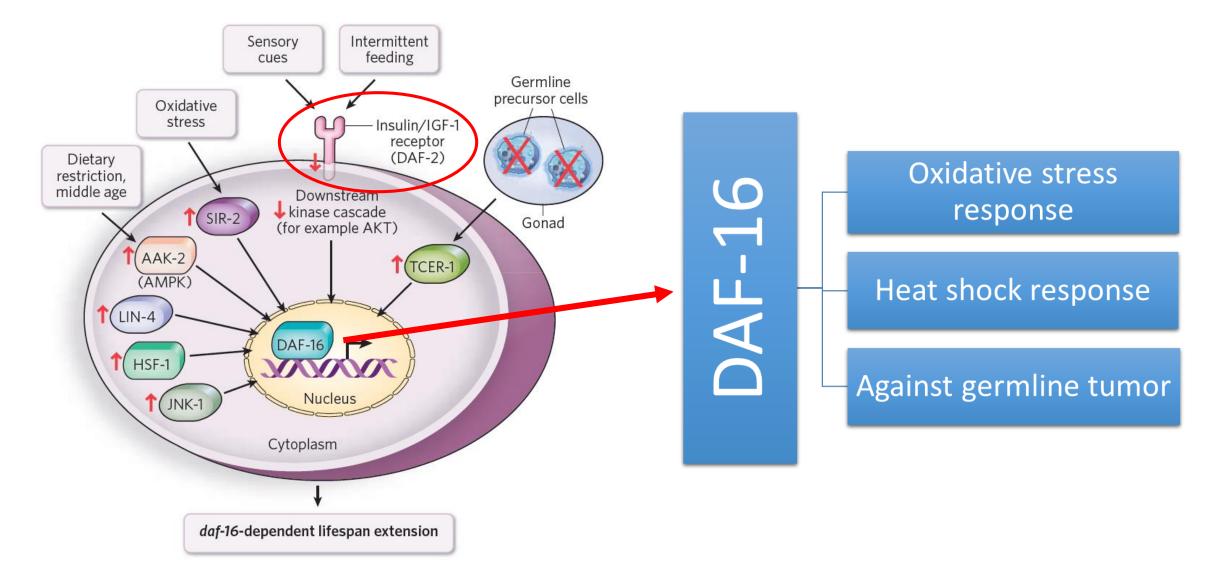
In Brief

The genetic composition of gut microbes controls the production of metabolites that impact host longevity.

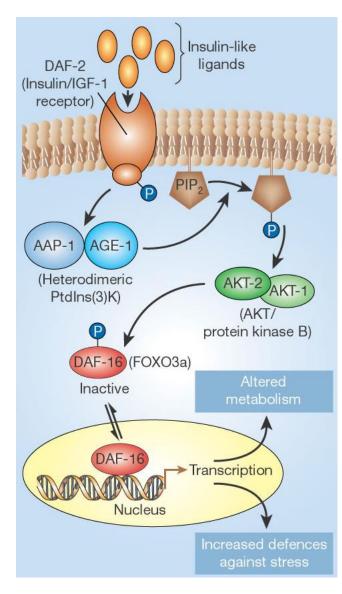
genome-wide screen of the E. coli single-gene knockout library for lifespan extension in C. elegans.

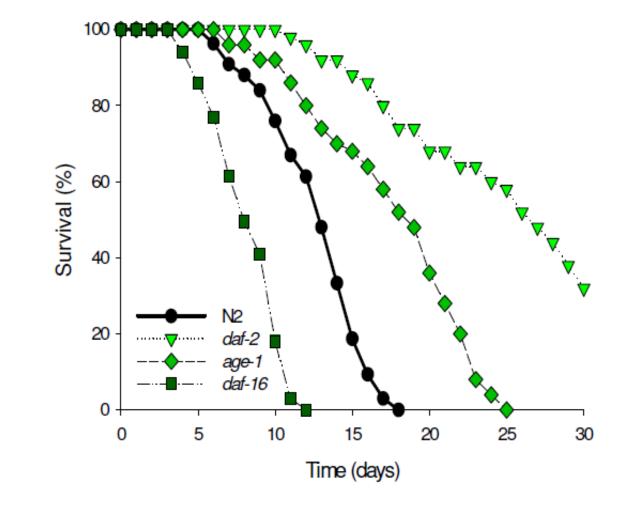
Gut microbiota increase C. elegan lifespan

Han, B., et al. (2017). Cell, 169(7), 1249-1262.


Gut microbiota increase C. elegan lifespan

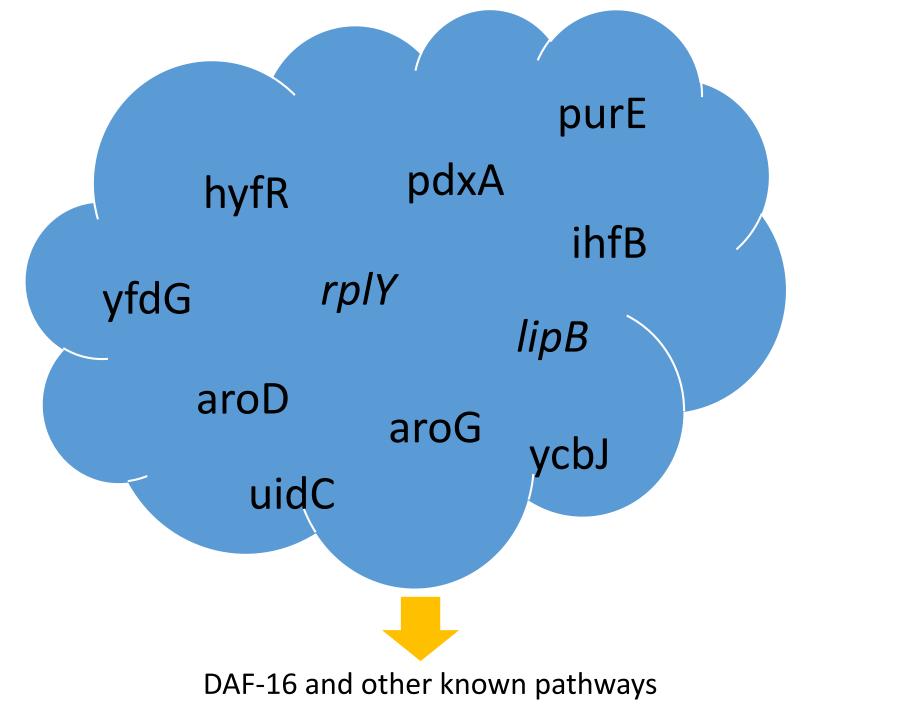
Category	Gene	Description	Lifespan Extension	<i>E. coli</i> BW25113	<i>E. coli</i> MG1655	Adult Effect
	hns	global DNA-binding transcriptional dual regulator	40%	Y	Y	Y
Transcription	ihfB	integration host factor; DNA-binding protein	35%	Y	Υ	Y
&Translation	hyfR	DNA-binding transcriptional activator	16%	Y	Y	Y
	πpIY	50S ribosomal subunit protein	osomal subunit protein 11% Y	Y	Y	Ν
	aroG	3-deoxy-D-arabino-heptulosonate-7-phosphate synthase	29%	Y	Y	Y
	aroD	3-dehydroquinate dehydratase	24%	Y	Y	N
	lipB	lipoyl-protein ligase	23%	Y	Υ	Y
	purE	N5-carboxyaminoimidazole ribonucleotide mutase	21%	Y	Y	Y
Metabolism &	pdxA	4-hydroxy-L-threonine phosphate dehydrogenase	21%	Y	Υ	Y
Respiration	gmhA*	D-sedoheptulose 7-phosphate isomerase	19%	Y	N/A	N/A
	pabB	aminodeoxychorismate synthase	18%	Y	Y	Ν
	ynjE	thiosulfate sulfur transferase	18%	Y	Υ	Y
	nrfG	heme lyase	17%	Y	Y	Y
	psuK	pseudouridine kinase	10%	Y	Ν	Ν
	lpp	murein lipoprotein	27%	Y	Y	Y
	yfiB	outer membrane lipoprotein	20%	Y	Ν	Ν
Membrane &	sapD	antimicrobial peptide transporter	17%	Y	Y	Y
Transport	uidC	outer membrane porin protein	17%	Y	Ν	Y
	ygjV	inner membrane protein	12%	Y	Y	Y
Ducto co o	secB	protein export chaperone	29%	Y	Y	Y
Protease & Chaperone	lon	DNA-binding ATP-dependent protease	25%	Y	Y	Y
onaperone	skp	periplasmic chaperone	16%	Y	Y	Y
	pbl	lytic transglycosylase	21%	Y	Ν	Ν
	ycbJ	unknown	19%	Y	Y	Y
	trxA	thioredoxin	15%	Y	Y	Y
Others	ycgL	unknown	14%	Y	Y	Ν
	ycgN	unknown	12%	Y	Ν	Y
	recC	exonuclease V	11%	Y	Y	Y
	yfdG	prophage; bactoprenol-linked glucose translocase	10%	Y	Y	Y


29 out of 3983 mutants that prolong C. elegans lifespan by >10%. These mutants are classified into different functional categories, delineated by different colors.

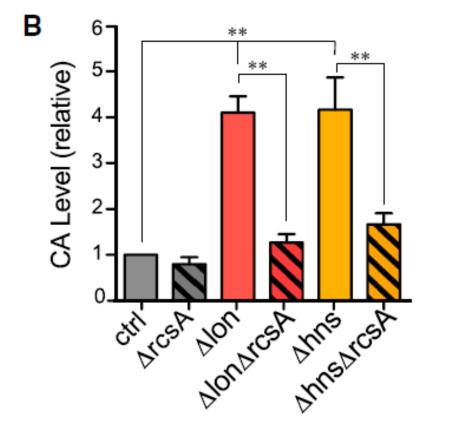

Fig 4. A genome-wide screen of the E. coli single-gene knockout library for lifespan extension in C. elegans

DAF-16/FOXO promotes longevity

The DAF-16 signalling pathway and lifespan



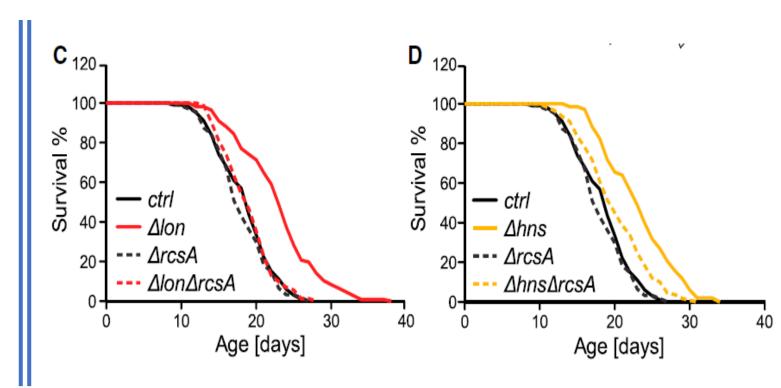
Gut microbiota alters host lifespan via DAF-16


	dat	daf-16(mgDf47)			
Mutant	Total N	Lifespan	n unlus		
	(censor N)	extension	p value	(c	
lon	167 (11)	22%	< 0.001		
hns	155 (13)	17%	< 0.001		
ihfB	212 (8)	29%	< 0.001		
aroD	186 (7)	20%	< 0.001		
secB	161 (10)	15%	< 0.001		
gmhA	191 (6)	13%	< 0.001		
ycgL	187 (9)	15%	< 0.001		
hyfR	227 (10)	17%	<0.001		
uidC	165 (14)	15%	<0.001		
sapD	209 (5)	11%	< 0.001		
ycbJ	173 (1)	21%	< 0.001		
yfiB	219 (12)	17%	<0.001		
ygjV	180 (4)	14%	< 0.001		
purE	151 (15)	10%	< 0.001		
nrfG	218 (11)	10%	0.001		
aroG	193 (5)	19%	<0.001		
pbl	204 (2)	19%	< 0.001		
lpp	180 (6)	5%	0.008		
pdxA	187 (10)	6%	0.003		
lipB	158 (12)	8%	0.001		
ynjE	203 (13)	5%	0.022		
pabB	172 (4)	8%	< 0.001		
trxA	159 (15)	1%	0 419		
recC	150 (12)	4%	0.293		
skp	167 (9)	4%	0.057		
rplY	163 (7)	4%	0.094		
yfdG	161 (9)	3%	0.235		
ycgN	157 (13)	4%	0.036		
psuK	208 (13)	2%	0.358		

7/29 mutants can prolong the lifespan through the host DAF-2/IGF-1 signaling pathway.

Lifespan extension $\ge 10\%$, p<0.05Lifespan extension 5%~10%, p<0.05Lifespan extension <5%, p>0.05 Fig 6. Genetic Interaction Analyses with Host Longevity Mechanisms

hns & Ion **Colanic Acid**



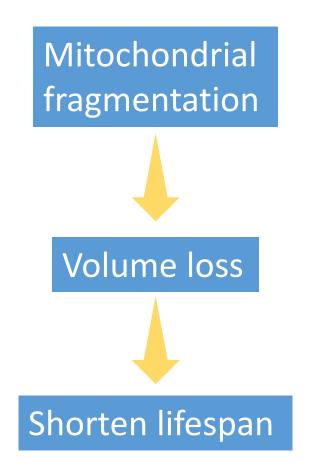

Fig 7. Ion and hns show increased CA secretion in the culture medium

Fig 8. The rcsA deletion suppresses the lifespan extension conferred by lon and hns

Colanic Acid(CA) Overproduction as a Longevity-Promoting Mechanism

Han, B., et al. (2017). *Cell*, *169*(7), 1249-1262.

CA reduces mitochondrial fragmentation

G C. elegans muscular mito-GFP (8-day-old)

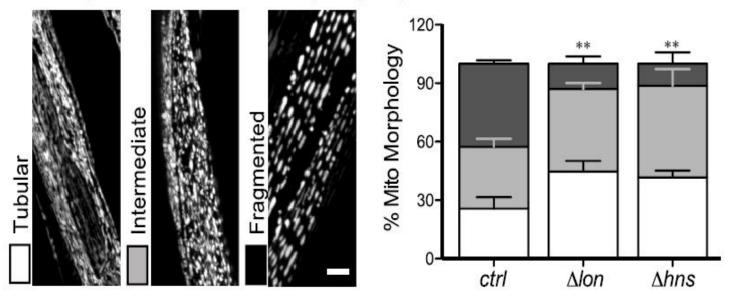
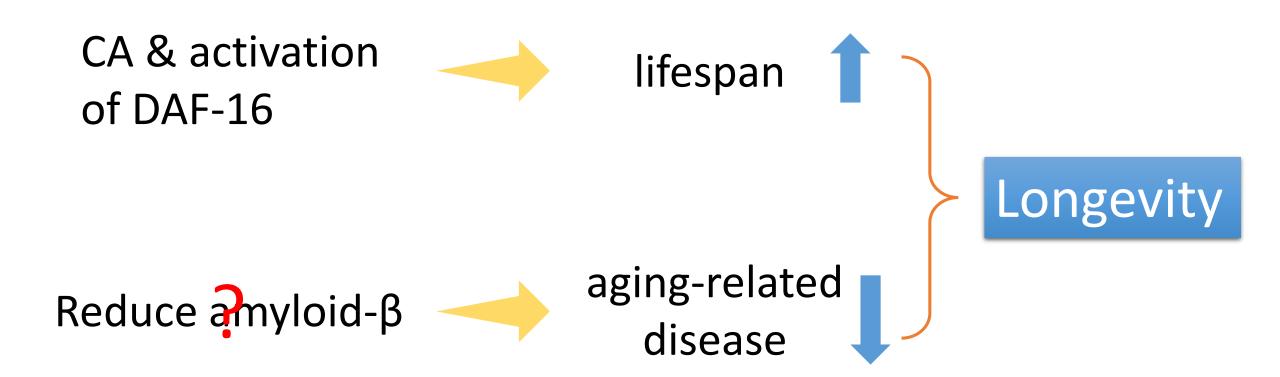
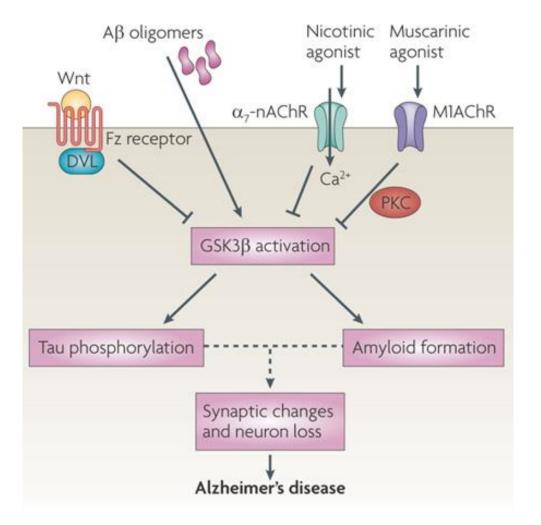
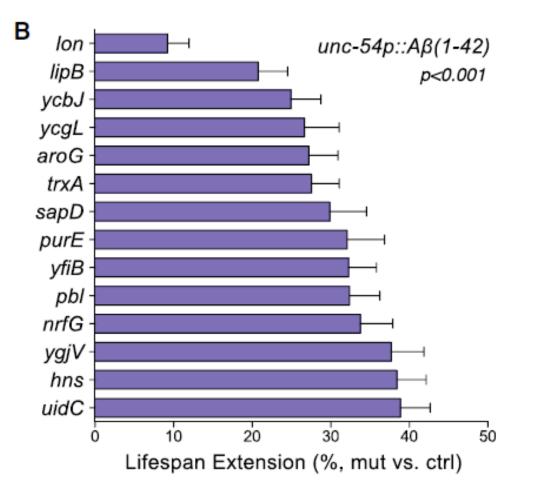




Fig 9. CA decreases mitochondrial fragmentation in C. elegans

Amyloid-B & Alzheimer's disease



-Normal: Wnt ligands inhibit GSK3β activation

-Abnormal: GSK3^β is activated

Activation of Wnt signalling protects from amyloid toxicity

Inestrosa, N. C., & Arenas, E. (2009). Nature Reviews Neuroscience, 11(2), nrn2755.

Fourteen bacterial mutants significantly increase the survival of Aβ transgenic strains

Fig 10. 14 mutants significantly prolong the lifespan of the $A\beta$ transgenic strains

Microbiota ameliorates amyloid-β accumulation

Han, B., et al. (2017). Cell, 169(7), 1249-1262.

Other longevity-related bacteria

Aging Cell (2016) **15**, pp227–236

Doi: 10.1111/acel.12431

Effects and mechanisms of prolongevity induced by Lactobacillus gasseri SBT2055 in Caenorhabditis elegans

d: 9 February 2017 d: 3 July 2017

OPEN 쉽 ACCESS Freely available online

Anti-Inflammatory Lactobacillus rhamnosus CNCM I-3690 Strain Protects against Oxidative Stress and Increases Lifespan in *Caenorhabditis elegans*

Gianfranco Grompone^{1,2*}, Patricia Martorell³, Silvia Llopis³, Núria González³, Salvador Genovés³, Ana Paula Mulet², Tamara Fernández-Calero⁴, Inés Tiscornia⁵, Mariela Bollati-Fogolín⁵, Isabelle Chambaud¹, Benoit Foligné⁶, Agustín Montserrat⁷, Daniel Ramón³

SCIENTIFIC REPORTS

OPEN The Transcription Factor DAF-16 is Essential for Increased Longevity in *C. elegans* Exposed to Bifidobacterium longum BB68 ed online: 07 August 2017

Liang Zhao^{1,2}, Yang Zhao^{2,3}, Ruihai Liu⁴, Xiaonan Zheng^{2,3}, Min Zhang⁵, Huiyuan Guo^{1,2}, Hao Zhang^{1,3} & Fazheng Ren^{1,2,3,6}

Potential application in future

Aging Cell (2015) 14, pp707-709

Doi: 10.1111/acel.12340

SHORT TAKE

The life-extending effect of dietary restriction requires Foxo3 in mice

NIH Public Access Author Manuscript Circ Res. Author manuscript; available in PMC 2014 March 29.

Published in final edited form as: Circ Res. 2013 March 29; 112(7): 992–1003. doi:10.1161/CIRCRESAHA.112.300749.

Expanded Granulocyte/Monocyte Compartment in Myeloid-Specific Triple Foxo Knockout Increases Oxidative Stress and Accelerates Atherosclerosis in Mice We may utilize gut microbiota -related pathways to increase our lifespan and improve health & life quality

Summary

- Gut microbiota increase lifespan through DAF-16 pathway
- E. Coli slows aging process via colanic acid overproduction
- Gut microbiota can reduce amyloid-β accumulation

Tips of keeping healthy

Keep regular time table & exercise more

Thanks for listening!